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Low-dimensional chaotic dynamical systems can exhibit many characteristic 
properties of stochastic systems, such as broad Fourier spectra. They are dis- 
tinguishable from stochastic processes through finite values for their dimension, 
Lyapunov exponents, and Kolmogorov-Sinai entropy. We discuss how these 
characteristic observables are modified in spatiotemporal chaotic systems like 
coupled map lattices. We analyze with the help of Lyapunov concepts how the 
stochastic limit is approached and how these properties can be observed directly 
through local dimension measurements from reconstructed time series. Finally, 
we discuss the interaction of spatiotemporal attractors with external noise and 
possible connections to problems of pattern selection and stability. 

KEY WORDS: Fractal dimensions; Lyapunov spectra; comoving Lyapunov 
dimension; coupled map lattice; spatiotemporal chaos; noise-induced 
transitions. 

1. I N T R O D U C T I O N  

The study of chaotic dynamics has given us a new perspective on erratic 
phenomena in nature. It is well known that erratic behavior can originate 
from deterministic mechanisms. (11 

How can deterministic chaos be distinguished from random noise? Let 
us first recall some properties of random processes: According to Chaitin (2) 
and Kolmogoroff,  (3) randomness is defined as the incompressibility of data 
in the sense that there exists no deterministic process which can reproduce 
the data and which uses less information than is needed to just copy the 
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data. It is shown, however, by Chaitin (2) with the use of G6del's theorem 
that we cannot prove that any given time series is "random" in that sense. 

On the other hand, the converse procedure (i.e., to determine that a 
given time series is not random in the sense of algorithmic complexity) can 
be carried out in some cases. Most of the modern methods for this 
procedure are based on geometrical reconstruction of the dynamics in state 
spaces with increasing dimensionality. (4'5) An overview of methods for 
estimating the minimal dimensionality of a state space which contains all 
the relevant dynamics can be found in refs. 6 and 7. 

Although these procedures have been successful in the past, an impor- 
tant constraint lies in the fact that they are based on the assumption of the 
existence of a low-dimensional attractor (D < 10, say). The assumption 
seems to hold in cases like the onset of turbulent time dependence of the 
fluid motion in cells of small aspect ratio in Benard or Taylor experiments. 

It is different, however, in the case of turbulence or spatiotemporal 
chaos. If the spatial correlations decay at length scales smaller than the 
system size, the dimension is assumed to be proportional to the system size 
and thus rather large in most experimental systems. A motivation for the 
present paper is to search for algorithms which allow one to distinguish 
spatiotemporal chaos from random processes. 

Under "spatiotemporal chaos" we understand a deterministic 
dynamical system which shows temporal chaos at each lattice site and 
which has a nontrivial incoherent structure in space. It can serve as model 
for fluid turbulence, chemical reaction systems, plasmas, liquid crystals, 
solid-state systems (charge density waves, Josephson junction arrays, spin 
waves), and perhaps also biological information processing networks. A 
simple and essential model for spatiotemporal chaos, which we want to use 
in this paper, consists of local iterated maps on a lattice with diffusive 
coupling. (8-17) 

A coupled map lattice (CML) is a dynamical system with discrete 
time, discrete space, and continuous state as well as continuous control 
parameters (refs. 8, 9, 18, and 19; see also refs. 20-24). This combination of 
discrete and continuous variables is optimal for numerical simulations in 
which only moderate spatial and temporal accuracy is required but where 
we are interested in identifying bifurcations for which it is necessary to have 
precise control over the state and parameters. 

In this paper, we restrict ourselves to the following nonlinear local 
dynamics with diffusive coupling: 

x ,  + 1(0 = (1 - #) f(x,(i)) + �89 + 1)) + f ( x , ( i -  1))] + ~,(i) (1) 

where xn(i ) is the scalar state variable at a discrete time n and lattice point 
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i( i= 1, 2,..., N =  system size) with periodic boundary conditions. Here the 
mapping function f ( x )  is chosen to be the logistic map 

f ( x )  = 1 - a x  2 (2) 

and in(i) is assumed to be a random perturbation, 6-correlated both in 
space and time. 

We show that in a dimensional context the coupled map lattice indeed 
acts like a noise source in that dimensions measured from a local time 
series do not converge to a finite value as the embedding dimension is 
increased. We confirm this through direct embedding and dimension 
estimations as well as through estimation of Lyapunov exponents. In the 
case of one-dimensional lattices we observe that the rate of increase of the 
dimensional complexity is significantly smaller than for comparable white 
noise (simulated with a standard random number generator). For  planar 
lattices, however, the Lyapunov dimension depends quadratically on the 
embedding dimension, i.e., beyond a critical embedding dimension we 
cannot discriminate the signal produced by the two-dimensional lattice 
from stochastic white noise. This is qualitatively different from results for 
coupled chains of maps. 

In the last section we present some results on the same system of 
coupled maps with parameters for which we observe stable regions of 
periodic behavior interrupted by patches of chaotic oscillations. We show 
evidence that these patterns are attractors in the sense that they are stable 
against low-level noise. Their relative stability (in the absence of any 
Lyapunov functional) can be estimated by their robustness against external 
noise. 

2. GEOMETRICAL RECONSTRUCTION AND CORRELATION 
DIMENSION 

Let us briefly review the reconstruction and estimate of dimension. 
First, take an embedding dimension k and reconstruct the phase space 
following the method of Packard eta/. (4) and Takens. (5) To this end, we 
consider a scalar time series Xm and define the k-dimensional vector time 
series 

X m ~- ( X m ,  X . . . . . . . .  X m - - ( k - -  1)z) (3) 

where ~ > 0 is a fixed time delay. For  the estimation of the dimension we 
apply a slight modification of a method introduced by Grassberger and 
Procaccia. (25"26) Consider the number nk(r) of pairs of vectors Xm, X t which 
are separated by a distance (in the k-dimensional space) less than r. The 
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dimension D~ of the reconstructed data set in k space and its dynamical 
entropy Kk can be defined by 

~l k ( r ) = 7rDke k~Kk (4) 

where 7 is a constant and z is the time delay of the reconstruction. In Fig. 1 
we plot nk ( r )  as a function of r on a log-log scale for increasing embedding 
dimensions k. We see that the slope of the curves for small distances is 
constant (corresponding to the one-dimensional attractor of the logistic 
map) but the curves are shifted by a constant value which indicates the 
dynamical entropy Kk of the chaotic map. 

Due to the positive dynamical entropy, the scales for which the dimen- 
sion can be resolved go to zero with increasing embedding dimension k. 
For  large distances, the slope becomes arbitrarily large, indicating that 
iterates of chaotic maps approach stochastic noise. This property is used in 
the construction of random number generators for computers. 

If a system falls onto a low-dimension attractor, the slope 

log nk( r )  
D~-- - -  (5) 

log r 

C3 

C [D-  

[33 
�9 

C3 

-'5 -'3 -'i -7 1 
Log r 

Fig. 1. Number n~(r) of pairs of vectors (x~, xj) within distance r versus separation r on a 
double logarithmic scale for the one-dimensional single logistic map. [Eq. (2) with a = 1.95]. 
The different curves correspond to increasing embedding dimensions, The slopes of the curves 
determine the correlation dimension, and their spacing measures their dynamical entropy. 
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converges to the dimension of the attractor D as k is increased and r goes 
to zero. In the same way Kk tends asymptotically to the entropy K of the 
system. 

Since we are considering a spatially extended coupled system in which 
the dimension increases in proportion to the system size, we expect that the 
dimension Dk observed from a reconstructed time series of a single lattice 
point will not converge for a given distance r as the embedding dimension 
k increases. Stochastic noise can be considered as the limit for which the 
dimension or the entropy becomes infinite. Again this is a mathematical 
statement and its observability depends on the concrete realization of the 
system (see, e.g., refs. 27 and 28). 

We first discuss the behavior of Dk in a spatially extended system 
where the k - d  dimension Dk does not converges to a constant value 
within a realistic embedding dimension (Dk < 20, say, which is small com- 
pared to the total dimension of the full lattice system). If the data are 
stochastic, D~ = k must hold theoretically. For numerical estimation of this 
relationship with a limited number of data points (we typically used 
r/data = 1 0  4 points, but also tested some results with up to r/aata = 3 x 105), 
we observe the convex behavior of Fig. 2, which we shall discuss below. In 
spatiotemporal chaos, where the dynamics is deterministic, the increase of 
the slope is expected to be smaller than this upper bound given by white 
noise. 

Fig .  2. 
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Observed correlation dimension D~ as a function of embedding dimension k for time 
series produced by a random generator. 
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3. L Y A P U N O V  A N A L Y S I S  A N D  P R O P A G A T I O N  OF 
P E R T U R B A T I O N S  

In this section we will make an estimate of the increase of the observed 
dimension as a function of the embedding dimension, using Lyapunov 
analysis. The main assumption here is that Dg measures the degrees of 
freedom for the dynamics of k-embedded vectors. We estimate Dk by 
counting the effective number of degrees of freedom which govern the 
vector of length k at a fixed lattice point j. 

Let us take a one-dimensional lattice system with j ~ [ - L ,  L ]  (L >/50) 
and observe the dynamics of the variable x at the point j -- 0. The dynamics 
of x ( j = 0 ,  t) is embedded in a k-dimensional phase space by taking 
x(j = 0, t + 1 ), x(j = 0, t + 2),..., x(j = 0, t + k). We then ask which lattice 
points l~ E - L ,  L ]  have an influence on the reconstruction of the time- 
delayed dynamics at j = 0 for an embedding dimension k > 1. 

For  this purpose, the notion of comoving Lyapunov exponent 
introduced by R.J.  Deissler and K. Kaneko (3~ is useful. The maximal 
comoving Lyapunov exponent A~(v) is defined as the maximal Lyapunov 
exponent in the inertial reference frame moving at a constant velocity v 
relative to the lattice. A small disturbance is then transmitted with the same 
velocity v by an amplifying (contracting) ratio exp[A~(v)] per unit time. 
See Fig. 3 for examples of maximum comoving Lyapunov exponents. 

If the lattice point l satisfies the condition An(k/l)> 0, a small distur- 
bance at the point is transmitted to the point j = 0 within k steps. Then the 

~J 

m ?  
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V 

Fig. 3. Maximal comoving Lyapunov exponent for coupled logistic map lattice (�9 
a = 1.9,/~ = 0.4; (A) a = 1.85, p = 02] calculated from the product of Jacobi matrices of sub- 
regions of size of 53 lattice sites for a total lattice of 500 sites. (The Lyapunov exponents were 
calculated for 2000 steps after 1000 transients.) The condition Al(vp)=O determines the 
maximal velocity Vp of propagation for disturbances in the lattice. 
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dynamics of lattice point l is relevant to determine the k-embedded 
dynamics at j = 0. This condition leads to 

Ill < kvp (6) 

where the maximal propagation velocity of perturbations can be deter- 
mined through Al(t~p)=0. (29) The region which satisfies Eq, (6) can be 
thought of as an "effective light cone." 

In a spatially extended system, intensive quantifiers such as entropy 
density are useful. Lyapunov spectra are defined from the product of Jacobi 
matrices as usual. An example of spectra is shown in Fig. 4. 

In direct correspondence to the dimension in dynamical systems, we 
can define the (Lyapunov) dimension density. The Lyapunov dimension is 
calculated from the Lyapunov spectra 2i in a subspace with size M by 

p = ~ r  j-~ I / ~ j + l  I J 

with j such that Z{=I 2~>0 and Z[+~ 2 i < 0 ( j +  1 <~M<~N). The inter- 
pretation of dimension density rests in the fact that each lattice point has 
effectively p degrees of freedom. Metric entropy density K is calculated in a 
similar way as 

= ~  ,% (8) 
i = 1  

with j such that ~ ' i = l J  2 i > 0  and Z j+li=t 2; < 0. The above two estimates lead 
to the upper bound for the effective number of degrees of freedom deter- 

Fig. 4. 
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Lyapunov spectrum for coupled logistic map lattice (a = 1.9, # = 0.4) calculated from 
the product of Jacobi matrices for 3000 steps after 2000 transients. 



1496 Mayer-Kress and Kaneko 

mined from orbits embedded in a k-dimensional state space. From these 
estimates we get an inequality for the estimated dimension Dk: 

Dk <<, 2pvpk =- cok (9) 

In the above argument, all the regions Ill < kvp contribute fully to the 
dynamics of the lattice point at j = 0, but this is an overestimate. Indeed, if 
Ill gets larger, the contribution must be smaller, since the comoving 
Lyapunov exponent decreases with velocity. We can obtain a slightly better 
bound, as discussed in the next section, by taking account of this effect. 
The inequality in Eq. (9) comes from the fact that the correlation dimen- 
sion of low-dimensional dynamical systems typically is smaller than the 
Lyapunov dimension. 

3.1. Effective and Comoving Lyapunov Dimension 

First, let us introduce the comoving Lyapunov spectra Ai(~) ). This is a 
straightforward generalization of maximal comoving Lyapunov exponent. 
Take a large subregion and calculate the long-time product of Jacobi 
matrices in a comoving frame of velocity v. (3~ Logarithms of absolute 
values of eigenvalues divided by time steps give the comoving Lyapunov 
spectra. The maximal comoving Lyapunov exponent in the previous 
section is the first exponent A l(V). The conventional Lyapunov spectra 2i 
are obtained as  Ai(O ). Examples of comoving Lyapunov spectra are shown 
in Fig. 5. 

u~ 
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! 

Fig. 5. Comoving Lyapunov spectra for coupled logistic lattice (a = 1.9, p = 0.4) calculated 
from the product of Jacobi matrices from a subregion of size 50 of a total lattice of size 
N =  500. The average is taken over 1000 time steps after 1000 transients. Plotted are the 
spectra for v = ( O )  0, (A)  0.1, ( + )  0.4, (• 0,8. 
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The comoving Lyapunov dimension density is defined as 

dL(V) = j(v) + tAj+ l(v)l J (10) 

with j(v) such that ~j(v] Ai(v)> 0 and ~'J(~;+~Ai(v)< 0. This quantity is a i = 1  s = 1 

Lyapunov dimension density in a Galilean frame of reference with velocity 
v. The comoving Lyapunov dimension density p is given by dL(0 ) (Fig. 6). 
The comoving Lyapunov dimension density which describes the influence 
of a perturbation at a lattice point l on a k-vector at site j =  0 is given by 
dL(l/k). Thus the upper bound for the dimension Dk is estimated by 

d L ( / / k )  > 0 

Dk <~ E dLtl/k) =-ck (11) 
l = 0  

[summation is taken while dL(l/k)>O, in other words, Ill <kvp]. Since 
dL(l/k)<~p, the above estimate gives a better bound than that in the 
previous section, which is obtained by taking dL(]/k ) =p. Numerical data 
for the metric entropy density K, the Lyapunov dimension density p, the 
maximal propagation velocity vp, and the increase rates of the k - d  
Lyapunov dimension Co and c for the logistic lattice with nonlinearity 
parameter a and coupling parameter # are shown in Table I. 

3.2. Est imate  of  D imens ion  Dens i ty  

It is impossible to obtain the dimension density and velocity separately 
from a reconstruction using a single lattice point. This separation is 

m. 

N . 

c,t 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

VELOCITY 

Fig. 6. Comoving Lyapunov dimension density for coupled logistic lattice (a = 1.9, tt = 0.4) 
calculated from the product of Jacobi matrices from a subregion of size 50 of a total lattice of 
size N = 5000. The average is taken over 1000 time steps after 1000 transients. 
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Fig. 7. Two-point measurement  of time series xj and x~ at locations j and i. The shaded 
regions indicates lattice points from which perturbations will influence both vectors x(j ,  t = 0) 
and x(i, t = 0). 

possible, however, from an observation and reconstruction using two 
spatially distant points (for similar ideas see refs. 31 and 34; see also refs. 15 
and 33). 

Let us denote the distance between the two points a and b as R. First 
we use the rough argument in Section 2: If the two points are separated by 
an amount greater than the effective light cone given by the condition 

R > 2vpk (12) 

then the two vectors reconstructed from the two points are effectively 
independent. Thus, the bound of the observed dimension is just a sum of 
the dimensions from the two single points, i.e., 

D(Z)(k; R) < 4pvpk = 2cok (13) 

On the other hand, if the embedding dimension k is larger than R/(2Vp), 
the two effective light cones overlap (see Fig. 7). Since the region should be 
counted only once in the two-point observation, we have to cancel the 
double counting of the region from the above estimate, which leads to 

D(2)(k; R) < 2pvpk + Rp = cok + Rp (14) 

If the inequality in the above estimate is not too large, it gives a way to see 
the velocity and dimension density separately. The above estimate leads to 

p = ~  D(2) (k ;R) -~  (Dk,a+D<b) (15) 



Spatiotemporal Chaos and Noise 1499 

which in the continuum limit R-* 0 becomes: 

aD~2)(k; R) 
P - c~R (16) 

where slopes Dk,, and Dk,b obtained by a single point reconstruction at 
sites a and b take the same value 2pvpk, since we assume spatial 
homogeneity. 

The above argument can be slightly modified in a manner similar to 
the analysis of the comoving Lyapunov dimension. The value Co should be 
replaced by c and the transition from the behavior according to Eq. (14) to 
that of Eq. (15) will be smooth in numerical realizations. The final result 
(16) does not change for large embedding dimensions, since dE(R/k) of 
Eq. (10) approaches p for large embedding dimensions k. 

4. D I R E C T  N U M E R I C A L  D I M E N S I O N  E S T I M A T E S  

4.1. Delay  Time D e p e n d e n c e  of  D k 

In the estimate of dimension in low-dimensional systems, it has been 
shown by Takens ~5~ that for a generic choice of delay times the geometrical 
reconstruction method provides an embedding of the attractor which 
produced the observed time series. For numerical realizations, however, 
this embedding can be effectively degenerated (e.g, the extension in some 
coordinate directions can be smaller than the noise resolution) such that 
for continuous time series the choice of an optimal delay time is important 
(see, e.g., ref. 27). Furthermore, a positive Kolmogorov-Sinai entropy K 
induces amplification of low-level perturbations, which in turn increases the 
observed dimensionality at a given scale for a certain embedding dimen- 
sion. We observe a similar effect in large, spatially extended systems: Since 
the observed dimension Dk increases with k, a different delay in the 
reconstruction corresponds to selecting vectors of the space of the same 
Euclidean dimension, but the distribution of the components will typically 
be quite different, as reflected in the finite resolution estimates of the 
correlation dimension. 

The dependence of Dk on the choice of delay time is due to a change 
of region in the effective light cone. If the delay time is increased by a factor 
of two, the effective spatial range increases by the same factor, since the 
time scale for the velocity vp is reduced by half. Generally, for the system 
measured by m steps, the term vp in the above formulas should be replaced 
by mvp. This gives a possible simple diagnosis to distinguish random data 
from spatiotemporal chaos, since in the random data D k --k holds irrespec- 
tive of m, if the delay time in the sampling is larger than the correlation 
time of (colored) noise. 
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4.2.  C o r r e l a t i o n  v e r s u s  L y a p u n o v  D i m e n s i o n  

For the calculation of quantities based on Lyapunov exponents we 
need to know the derivatives of the dynamics of the system, which often 
poses a severe complication for experimentally obtained time series. 
Therefore we compare the above results with those directly obtained from 
reconstructed time series using numerical algorithms for estimating 
correlation dimensions (for details of the algorithm see ref. 32). As men- 
tioned above, the values obtained from correlation dimension estimates are 
typically lower than the Lyapunov dimension values. These differences are 
especially large when the invariant measure of the system has many 
singularities and therefore a broad f (~ )  spectrum (see, e.g., ref. 40). We 
know that the single logistic function has a multifractal measure and we 
also expect that for the coupled system some of these singular properties 
will persist (see also the discussion in refs. 27 and 28). Thus, the above 
estimate of the slope for Dk by Lyapunov dimensions is always an upper 
bound for the corresponding values obtained from correlation dimensions. 

In Table I we present the numerical results for the estimated 
correlation dimension D20 (these values are not calibrated with the noise 
data) at a single lattice point ( j  = 49) for an embedding of k = 20. For  these 
calculations we iterated the complete lattice for n = 25,000 iterations to let 
transient behavior die out and then computed the correlation dimension on 
a set of the following ndata = 10,000 points. The two-point dimension D~ 2) is 
obtained by intertwining time series obtained from two lattice points i, j 
separated by a distance A = l i - J l  (see refs. 33 and 34). For  most parameter  
combinations we see only a very slight increase in the two-point dimension 
compared to the single-point dimension, which corresponds to a very low 
dimension density Pa = ( 1 / A ) ( D ~  z) - D k ) ,  where in our cases we have k = 20 
and typically A = 2. The only exceptions seem to be the cases with low non- 
linearity a and high coupling #, where the results differ from those obtained 

Table I. Quantification of Spatiotemporal Chaos in Coupled Map Lattices 

a # ~c p Vp c o c D2o d~2o ) cd 

1.95 0.4 0.084 0.77 0.55 0.86 0.61 4.3 4.9 0.34 
1.90 0.4 0.074 0.74 0.54 0.80 0.56 4.0 4.4 0.30 
1.85 0.4 0.067 0.72 0.53 0.76 0.53 3.8 4.2 0.16 
1.80 0.4 0.053 0.67 0.48 0.65 0.48 3.2 4.5 0.10 
1.95 0.2 0.16 1.0 a 0.40 0.8 0.54 4.3 4.7 0.26 
1.85 0.2 0.12 1.00 0.37 0.74 0.49 4.0 4.4 0.24 

a Since the logistic map is not invertible, the Lyapunov dimension can be larger than the 
embedding dimension. 
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Fig. 8. Correlation integral nk(r) [see Eq. (4)] for time series x( i=49,  t) of the logistic 
lattice [Eq. (1)] of size N =  100 and a =  1.8, /~=0.4. The calculations were performed on 
r/data = 1 0  4 points after ntran s = 2 x 104 transients. The time delay in the reconstruction is r = 1 
and the embedding dimensions were k = 1,..., 20. 
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Fig. 9. Same as in Fig. 2 for the data of Fig. 8. 
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Same as in Fig. 9 for data from two-point time series [x(i= 49, t), x(i = 52, t)] with 

the same parameters as in Fig. 8. 

from Lyapunov estimates. Finally, we estimated the increase rate ca (nor- 
malized with respect to the noise data of Fig. 2) of the observed dimension 
with the embedding dimension. These results show a dependence on the 
parameters a and /~ which is in good agreement with the corresponding 
values for Co and c obtained from the Lyapunov analysis. 

Some of the geometrical and statistical factors which decrease the 
numerically observed values for the correlation dimension are discussed in 
refs. 27, 28, and 32). It  is therefore very difficult to estimate accurately the 
absolute values of dimensions in situations where the dynamics is very 
complex. A method introduced by Somorjai (351 calibrates the numerical 
results with respect to the "white noise" signal obtained from the numerical 
random number generators (see Fig. 2). This is especially relevant if the 
system is very noisy in the sense that the observed dimension Dk increases 
rapidly with k, i.e., the above rate c is close to 1. This effect is even more 
pronounced in the two-point measurement, where the slope is increased 
drastically. A further complication of the one-dimensional logistic map is 
its noninvertibility, which also leads to the inapplicability of a Lyapunov 
dimension formula, e.g., for small coupling p in combination with large 
nonlinearity a the dimension density becomes larger than physically 
reasonable 3 and one would have to replace the logistic dynamics by the 

3 c > 1, and for these cases we cannot use our methods to distinguish a coupled map lattice 
from stochastic noise. A similar situation occurs for lattices in higher dimensions. 
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invertible dynamics of its extension, the two-dimensional H6non map. In a 
future study we plan to extend our investigations to coupled H6non map 
Iattices which would be equivalent to systems of coupled and driven 
oscillators with finite damping (note that the logistic map corresponds to 
the limit of infinite damping). 

5. L A T T I C E S  IN H I G H E R  S P A T I A L  D I M E N S I O N S  

We can simply extend the argument to spatiotemporal chaos in a 
higher spatial dimension. For  a single slope this is estimated by 

D~ ~< const x p(vpk) d (17) 

for a d-dimensional lattice system. If d >  1, the above estimate ultimately 
exceeds the upper bound D~ = k, as the embedding dimension gets larger. 
We may observe a crossover from k d to linear behavior. This means that 
within a single-point reconstruction, it is impossible to distinguish 
spatiotemporal chaos from random data. We may extend a two-point 
observation in Section 4 to a multipoint, or to a measurement at points on 
a curve or sphere, but this looks practically impossible due to the 
limitations of the computational abilities available today. 

6. N O I S E - I N D U C E D  T R A N S I T I O N S  

In the previous sections we treated the coupled lattice of logistic maps 
as a noise simulator and have therefore chosen the system parameters so 
that the dynamics on the lattice was uniformly chaotic. We have seen that 
additional noise has only minor effects on the lattice dynamics. In the 
following we discuss briefly the interaction of the lattice dynamics with 
external noise. We have changed the parameters to a = 1.7 and p = 0.4, so 
that the chaotic dynamics is now confined to bounded domains which are 
separated by regions of periodic dynamics. (36) The pattern of chaotic and 
periodic regions depends strongly on the initial conditions. Thus, the 
question arises of whether this pattern selection mechanism is due to 
coexisting spatiotemporal attractors. 

In Fig. 1 la we have a state with five primary cells exhibiting chaotic 
behavior. The system is deterministic (i.e., noise level a = 0) and the initial 
conditions are taken as a fixed random sequence. The boundary conditions 
are periodic. In Fig. 11b we see the influence of external, uniform, and 
bounded perturbations (a=0.005).  The state of Fig. l l a  is reproduced 
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(a) 

( b )  

Fig. 11. (a) Superposition of 500 iterates of the coupled map lattice (vertical axis) of Eq. (1) 
for the parameters a = 1.7 and/1 = 0.4 versus lattice position (horizontal axis). Superimposed 
on the primary periodic structure (cells) there exists a chaotic domain extending over five 
primary cells. Initial values are random. (b) Dame as in (a) but with the addition of uniformly 
distributed, delta-correlated random fluctuations with bounded amplitude (or=0.005). The 
spatial structure is still preserved. (c) Same as in (a) but with a noise level of cr =0.01. Now 
the spatial structure consists of six chaotic cells, a new attractor which was generated through 
a noise-induced transition. (d) Same as in (a), but as initial conditions we chose the final state 
of (c). The noisy perturbations in the regular part of the lattice have disappeared and the 
structure of the attractor is apparent. 
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(c) 

Fig. 11 (continued) 
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when the noisy perturbations are removed. This clearly indicates the attrac- 
tive nature of the spatial pattern on the lattice. For  a larger noise level 
(a = 0.01 ), we observe a transition to a new state with a chaotic domain of 
six primary cells. This new state appears to be more robust against external 
noise perturbations than the five-cell state of Fig. 1 la, since it returns to the 
deterministic attractor of Fig. 1 ld when the noise is removed. This obser- 
ved asymmetry of noise-induced transitions between coexisting attractors 
has been previously observed in the context of smooth perturbations of the 
logistic map on the interval which has coexisting attractors in regions with 
positive Schwarzian derivative. (37) There it also has been demonstrated that 
the statistical nature of the perturbation (e.g., noise versus periodic) is 
extremely relevant for the kinds of transitions which can occur. The theory 
of these nonlinear resonance effects has been developed and generalized by 
Hiibler and Lfischer, (38) and it turns out to be very successful in controlling 
chaotic dynamics. In a forthcoming paper we discuss in more detail pattern 
selection processes which are related to external perturbations./39) 

One interpretation of this state of the system is that we have mul- 
tistability in the sense of coexistence of several attractors for the same 
parameter combination. In order to test this hypothesis, we perturbed the 
system with additive, finite-amplitude delta-correlated noise. For  the case 
that the domains are mere reflections of the initial state we expect that 
small, random perturbations will destroy the domains in a random walk 
process. In the case of stable attractors, however, we expect that random 
perturbations will not strongly alter the solution. Furthermore, the system 
should return to its original state when the noise source is removed. 
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